
Cele pracy 
 

 Zaprojektowanie i implementacja aplikacji webowej wspomagającej zarządzanie 
projektami w przedsiębiorstwach 

 Umożliwienie zarządzania projektami, zadaniami, zespołami projektowymi oraz 
zasobami firmy, wspólna przestrzeń dyskowa, zespołem firmy 

 Zapewnienie bezpiecznego dostępu do systemu poprzez mechanizmy uwierzytelniania 
i autoryzacji 

 Rozdzielenie warstwy prezentacji od logiki biznesowej w architekturze klient–serwer 
 Weryfikacja poprawności działania systemu poprzez testy integracyjne i jednostkowe 

 
Celem pracy było zaprojektowanie i wykonanie zintegrowanego systemu webowego 
wspierającego zarządzanie projektami w organizacji. System umożliwia ewidencję 
projektów i zadań, zarządzanie zespołem projektowym, kontrolę statusów, alokację 
zasobów oraz generowanie raportów. Istotnym założeniem było zastosowanie 
architektury klient–serwer z wykorzystaniem REST API oraz zapewnienie 
bezpieczeństwa i spójności danych po stronie serwera. 
 
 

Zakres prac 

• Analiza problemu i istniejących rozwiązań 
Przeprowadzono analizę problematyki zarządzania projektami w organizacjach oraz przegląd 
dostępnych narzędzi klasy Project Management, takich jak Jira, Azure DevOps i Trello. Na tej 
podstawie określono braki funkcjonalne oraz potrzeby użytkowników. Wyniki analizy posłużyły 
do sformułowania wymagań dla projektowanego systemu. 

• Projekt systemu i modelu danych 
Opracowano koncepcję systemu w architekturze klient–serwer z wykorzystaniem REST API. 
Zaprojektowano strukturę aplikacji, role użytkowników oraz mechanizmy autoryzacji. 
Integralną częścią było zaprojektowanie relacyjnej bazy danych, uwzględniającej zależności 
pomiędzy użytkownikami, projektami, zadaniami i zasobami. 

 • Uwierzytelnianie oparte o sesje użytkownika 
System wykorzystuje uwierzytelnianie sesyjne po stronie serwera. Po poprawnym 
zalogowaniu dane użytkownika (m.in. identyfikator, rola oraz identyfikator firmy) są 
zapisywane w sesji. Każde kolejne żądanie do aplikacji jest weryfikowane na podstawie 
aktywnej sesji, bez konieczności ponownego logowania. 

 • Filtry autoryzacji dla widoków i REST API 
Zastosowano filtry autoryzacyjne po stronie serwera, które chronią zarówno widoki aplikacji, 
jak i endpointy REST API. Filtry blokują dostęp do zasobów w przypadku braku aktywnej sesji 
lub niewystarczających uprawnień, zwracając odpowiednie kody HTTP (np. 401). Dzięki temu 
logika bezpieczeństwa nie jest zależna od warstwy frontendowej. 

 • Ograniczanie dostępu do danych (scoping danych) 
Dostęp do danych jest dodatkowo zawężany na podstawie kontekstu organizacyjnego oraz 
przypisań użytkownika. Użytkownik widzi tylko projekty, zadania i zasoby, do których został 
przypisany lub które należą do jego firmy. Zapewnia to izolację danych pomiędzy 
organizacjami oraz zwiększa bezpieczeństwo systemu. 

 



Przykłady rozdzielenia warstwy prezentacji od logiki biznesowej 

• Autoryzacja i kontrola dostępu 
Warstwa prezentacji nie decyduje o tym, do jakich danych użytkownik ma dostęp. 
Sprawdzenie uprawnień, roli użytkownika oraz przypisań do projektów odbywa się po stronie 
serwera, w filtrach autoryzacyjnych i logice API. Frontend jedynie wysyła żądania i reaguje 
na odpowiedzi serwera. 

• Obsługa operacji biznesowych przez REST API 
Tworzenie i edycja projektów, zadań, przypisywanie użytkowników oraz alokacja zasobów są 
realizowane poprzez endpointy REST API. Backend odpowiada za wykonanie operacji, zapis 
do bazy danych oraz egzekwowanie reguł biznesowych, natomiast frontend wyłącznie 
prezentuje wynik operacji użytkownikowi. 

 

• Implementacja aplikacji webowej 
Zaimplementowano warstwę backendową w technologii PHP z wykorzystaniem frameworka 
CodeIgniter 4 oraz relacyjnej bazy danych MySQL. Warstwa frontendowa została wykonana 
jako aplikacja kliencka w technologii Vue.js 3. System realizuje kluczowe funkcje zarządzania 
projektami, zadaniami, zespołami, zasobami oraz raportami. 

 • Implementacja aplikacji webowej 

Zaimplementowano aplikację webową w architekturze klient–serwer z wyraźnym rozdzieleniem 
warstwy prezentacji od logiki biznesowej. Warstwa backendowa została wykonana w języku PHP z 
wykorzystaniem frameworka CodeIgniter 4 i udostępnia funkcjonalność systemu w postaci REST API. 
Odpowiada ona za obsługę żądań HTTP, realizację logiki biznesowej, walidację danych, autoryzację 
użytkowników oraz komunikację z relacyjną bazą danych MySQL. 

Warstwa frontendowa została zrealizowana jako aplikacja kliencka w technologii Vue.js 3, działająca w 
przeglądarce internetowej. Interfejs użytkownika komunikuje się z backendem wyłącznie poprzez REST 
API, pobierając i modyfikując dane systemowe. Frontend odpowiada za prezentację danych, obsługę 
formularzy oraz interakcję użytkownika z systemem. 

W ramach implementacji wykonano kluczowe moduły systemu, w tym zarządzanie użytkownikami, 
projektami, zadaniami, zespołami projektowymi oraz zasobami przedsiębiorstwa. Zaimplementowano 
również obsługę plików projektowych oraz generowanie raportów w formacie CSV, których metadane 
są przechowywane w bazie danych, a treść w systemie plików serwera. 

Istotnym elementem implementacji było zastosowanie mechanizmów bezpieczeństwa, takich jak sesje 
użytkownika, filtry autoryzacji oraz walidacja danych po stronie serwera. Dzięki temu zapewniono 
spójność danych, kontrolę dostępu do zasobów systemu oraz odporność na nieautoryzowane 
operacje. 

 

• Testowanie i weryfikacja działania systemu 
Przeprowadzono testy integracyjne typu health-check oraz testy jednostkowe i manualne 
REST API z wykorzystaniem narzędzia Postman. Zweryfikowano poprawność działania 
kluczowych funkcji systemu oraz spełnienie założonych wymagań funkcjonalnych i 
niefunkcjonalnych. Na podstawie wyników testów potwierdzono poprawność i stabilność 
rozwiązania. 

 

 

 



 

 

Kontrolery (app/Controllers/) — zarządzają logiką żądań i odpowiedzi; wywołują modele, 
ładują widoki. Przykłady: Admin.php, Auth.php, 

Modele (app/Models/) — warstwa dostępu do danych; mapują tabele, walidacje i zapytania. 
Przykłady: ProjectModel.php, ResourceModel.php, UserModel.php, TaskModel.php. 

Widoki (app/Views/) — szablony HTML/JS/CSS wyświetlane użytkownikowi. Przykłady: 
frontend.php, project.php, companies.php, admin.php. Widoki są renderowane przez 
kontrolery. 

Plik Routes.php zawiera instrukcje, które mapują żądania URL (URI) na odpowiednie 
kontrolery i metody. Oto co zazwyczaj zawiera ten plik: 

Filtry (app/Filters/) — middleware przed/po żądaniu (np. AuthFilter.php sprawdza 
autoryzację). 

Konfiguracje (app/Config/) — ustawienia aplikacji i frameworka: App.php, Routes.php, 
Database.php, Services it 

 

Baza danych (database/, app/Database/) — migracje, seedy i schematy (database/schema.sql, 
install.sql, app/Database/Migrations/). 


