Cele pracy

e Zaprojektowanie i implementacja aplikacji webowej wspomagajgcej zarzgdzanie
projektami w przedsiebiorstwach

e Umozliwienie zarzadzania projektami, zadaniami, zespotami projektowymi oraz
zasobami firmy, wspdlna przestrzen dyskowa, zespotem firmy

e Zapewnienie bezpiecznego dostepu do systemu poprzez mechanizmy uwierzytelniania
i autoryzacji

e Rozdzielenie warstwy prezentacji od logiki biznesowej w architekturze klient—serwer

e Weryfikacja poprawnosci dziatania systemu poprzez testy integracyjne i jednostkowe

Celem pracy byto zaprojektowanie i wykonanie zintegrowanego systemu webowego
wspierajgcego zarzgdzanie projektami w organizacji. System umozliwia ewidencje
projektéw i zadan, zarzadzanie zespotem projektowym, kontrole statuséw, alokacje
zasobdw oraz generowanie raportéw. Istotnym zatozeniem byto zastosowanie
architektury klient—serwer z wykorzystaniem REST AP| oraz zapewnienie
bezpieczenstwa i spojnosci danych po stronie serwera.

Zakres prac

e Analiza problemu i istniejgcych rozwigzan

Przeprowadzono analize problematyki zarzgdzania projektami w organizacjach oraz przeglad
dostepnych narzedzi klasy Project Management, takich jak Jira, Azure DevOps i Trello. Na tej
podstawie okreslono braki funkcjonalne oraz potrzeby uzytkownikéw. Wyniki analizy postuzyty
do sformutowania wymagan dla projektowanego systemu.

* Projekt systemu i modelu danych

Opracowano koncepcje systemu w architekturze klient—serwer z wykorzystaniem REST API.
Zaprojektowano strukture aplikacji, role uzytkownikéw oraz mechanizmy autoryzacji.
Integralng czescig byto zaprojektowanie relacyjnej bazy danych, uwzgledniajgcej zaleznosci
pomiedzy uzytkownikami, projektami, zadaniami i zasobami.

e Uwierzytelnianie oparte o sesje uzytkownika
System wykorzystuje uwierzytelnianie sesyjne po stronie serwera. Po poprawnym
zalogowaniu dane uzytkownika (m.in. identyfikator, rola oraz identyfikator firmy) sg
zapisywane w sesji. Kazde kolejne zagdanie do aplikacji jest weryfikowane na podstawie
aktywnej sesji, bez koniecznosci ponownego logowania.

e Filtry autoryzacji dla widokéw i REST API
Zastosowano filtry autoryzacyjne po stronie serwera, ktére chronig zaréwno widoki aplikacji,
jak i endpointy REST API. Filtry blokujg dostep do zasobdw w przypadku braku aktywnej sesji
lub niewystarczajgcych uprawnien, zwracajgc odpowiednie kody HTTP (np. 401). Dzieki temu
logika bezpieczenstwa nie jest zalezna od warstwy frontendowe;.

e Ograniczanie dostepu do danych (scoping danych)
Dostep do danych jest dodatkowo zawezany na podstawie kontekstu organizacyjnego oraz
przypisan uzytkownika. Uzytkownik widzi tylko projekty, zadania i zasoby, do ktérych zostat
przypisany lub ktére naleza do jego firmy. Zapewnia to izolacje danych pomiedzy
organizacjami oraz zwieksza bezpieczenstwo systemu.



Przyktady rozdzielenia warstwy prezentacji od logiki biznesowej

* Autoryzacja i kontrola dostepu
Warstwa prezentacji nie decyduje o tym, do jakich danych uzytkownik ma dostep.
Sprawdzenie uprawnien, roli uzytkownika oraz przypisan do projektow odbywa si¢ po stronie
serwera, w filtrach autoryzacyjnych i logice API. Frontend jedynie wysyta zadania i reaguje
na odpowiedzi serwera.

* Obsluga operacji biznesowych przez REST API
Tworzenie i edycja projektow, zadan, przypisywanie uzytkownikéw oraz alokacja zasobow sa
realizowane poprzez endpointy REST API. Backend odpowiada za wykonanie operacji, zapis
do bazy danych oraz egzekwowanie regut biznesowych, natomiast frontend wytacznie
prezentuje wynik operacji uzytkownikowi.

* Implementacja aplikacji webowej

Zaimplementowano warstwe backendowa w technologii PHP z wykorzystaniem frameworka
Codelgniter 4 oraz relacyjnej bazy danych MySQL. Warstwa frontendowa zostata wykonana

jako aplikacja kliencka w technologii Vue.js 3. System realizuje kluczowe funkcje zarzadzania
projektami, zadaniami, zespotami, zasobami oraz raportami.

e Implementacja aplikacji webowe]

Zaimplementowano aplikacje webowa w architekturze klient—serwer z wyraznym rozdzieleniem
warstwy prezentacji od logiki biznesowe]j. Warstwa backendowa zostata wykonana w jezyku PHP z
wykorzystaniem frameworka Codelgniter 4 i udostepnia funkcjonalnos¢ systemu w postaci REST API.
Odpowiada ona za obstuge zadan HTTP, realizacje logiki biznesowej, walidacje danych, autoryzacje
uzytkownikow oraz komunikacje z relacyjng bazg danych MySQL.

Warstwa frontendowa zostata zrealizowana jako aplikacja kliencka w technologii Vue.js 3, dziatajgca w
przegladarce internetowej. Interfejs uzytkownika komunikuje sie z backendem wytgcznie poprzez REST
API, pobierajgc i modyfikujgc dane systemowe. Frontend odpowiada za prezentacje danych, obstuge
formularzy oraz interakcje uzytkownika z systemem.

W ramach implementacji wykonano kluczowe moduty systemu, w tym zarzgdzanie uzytkownikami,
projektami, zadaniami, zespotami projektowymi oraz zasobami przedsiebiorstwa. Zaimplementowano
rowniez obstuge plikow projektowych oraz generowanie raportéw w formacie CSV, ktorych metadane
sg przechowywane w bazie danych, a tres¢ w systemie plikow serwera.

Istotnym elementem implementacji byto zastosowanie mechanizmdw bezpieczeristwa, takich jak sesje
uzytkownika, filtry autoryzacji oraz walidacja danych po stronie serwera. Dzieki temu zapewniono
spojnosc¢ danych, kontrole dostepu do zasobdw systemu oraz odpornos$é na nieautoryzowane

operacje.

» Testowanie i weryfikacja dziatania systemu

Przeprowadzono testy integracyjne typu health-check oraz testy jednostkowe i manualne
REST API z wykorzystaniem narzedzia Postman. Zweryfikowano poprawnos$¢ dziatania
kluczowych funkcji systemu oraz spetnienie zatozonych wymagan funkcjonalnych i
niefunkcjonalnych. Na podstawie wynikow testow potwierdzono poprawnosé i stabilnosé
rozwigzania.



Kontrolery (app/Controllers/) — zarzadzajg logika zadan i odpowiedzi; wywotujg modele,
tadujg widoki. Przyktady: Admin.php, Auth.php,

Modele (app/Models/) — warstwa dostepu do danych; mapujg tabele, walidacje i zapytania.
Przyktady: ProjectModel.php, ResourceModel.php, UserModel.php, TaskModel.php.

Widoki (app/Views/) — szablony HTML/JS/CSS wyswietlane uzytkownikowi. Przyktady:
frontend.php, project.php, companies.php, admin.php. Widoki s3 renderowane przez
kontrolery.

Plik Routes.php zawiera instrukcje, ktdre mapujg zadania URL (URI) na odpowiednie
kontrolery i metody. Oto co zazwyczaj zawiera ten plik:

Filtry (app/Filters/) — middleware przed/po zadaniu (np. AuthFilter.php sprawdza
autoryzacje).

Konfiguracje (app/Config/) — ustawienia aplikacji i frameworka: App.php, Routes.php,
Database.php, Services it

Baza danych (database/, app/Database/) — migracje, seedy i schematy (database/schema.sql,
install.sql, app/Database/Migrations/).



